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Capacitated Network Bargaining Games

In capacitated network bargaining games we are given a triple (G,w, c). The
vertices of the graph represent players, the edges represent potential deals
between players and the edge weights represent the values of the deals. Each
player v can enter in at most cv deals. For each deal, the involved players
have to decide how to split the value of their deal. Hence, an outcome is
naturally associated with a c-matching M , and a vector a ∈ R2E

≥0 that satisfies
auv + avu = wuv if uv ∈M , and auv = avu = 0 otherwise. An outcome is
stable if no pair of players has an incentive to break the current outcome to
enter in a deal with each other.

LP Characterization

A key property of (capacitated) NBG is that instances admitting a stable
outcome have a very nice LP characterization, as shown by [6, 2]: given an
instance (G,w, c), there exists a stable outcome for the corresponding game
on G if and only if the value of a maximum-weight c-matching νc(G) equals
the value of a maximum-weight fractional c-matching νcf(G), defined as

νcf(G) := max{w>x : x(δ(v)) ≤ cv ∀v ∈ V, 0 ≤ x ≤ 1}.
In other words, instances admitting stable outcomes are the ones for which
the LP relaxation of the maximum-weight c-matching problem has an optimal
integral solution. A graph G for which νc(G) = νcf(G) is called stable.

The Stabilizer Problem

The stabilizer problem is motivated by the fact that not all graphs are stable.
The goal is to minimally modify a graph as to ensure a stable outcome. A
natural way to modify a graph is by reducing the capacity of vertices (players),
or removing edges (blocking deals).

Capacity-stabilizer problem: given an instance (G,w, c), find a minimum-
cardinality multi-set S of vertices, such that if you reduce the capacity of all
vertices in S by one, you obtain a stable graph.

Edge-stabilizer problem: given an instance (G,w, c), find a minimum-
cardinality set F ⊆ E, such that G \ F is stable.

In unit-capacity (c = 1) graphs, the capacity-stabilizer problem is polynomial-
time solvable [1, 5, 7], while the edge-stabilizer problem is NP-hard, and
even hard-to-approximate with a constant factor, but admits an O(∆)-
approximation algorithm [4, 3, 7].

Structure

Extreme point solutions of νcf(G), or basic fractional c-matchings, satisfy
xe ∈ {0, 1

2, 1} for all edges e ∈ E, and the edges with xe = 1
2 induce vertex-

disjoint odd cycles with saturated vertices. To stabilize an instance, we hence
want to get rid of these odd cycles.
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Capacity-Stabilizer

Theorem 1

The capacity-stabilizer problem is polynomial-time solvable.

The main idea of the algorithm is this: compute a basic maximum-weight
fractional c-matching, and for each odd cycle induced by xe = 1

2 edges, choose
one vertex and reduce its capacity by one.

Key properties. Our algorithm preserves the total value that the players
can get up to a factor that is asymptotically best possible, and it reduces the
capacity of each vertex by at most one. This has a nice network bargaining
interpretation: there is always an optimal and at the same time fair way to
stabilize instances, as no player will have its capacity dramatically reduced
compared to others.

Edge-Stabilizer

Theorem 2

The edge-stabilizer problem admits an O(∆)-approximation algorithm.

Based on the unit-capacity approximation algorithm, we use the capacity-
stabilizer algorithm, but instead of reducing the capacity of the vertices, we
remove all edges incident with those vertices, except the edges e with xe = 1.

Key properties. In unit-weight (w = 1) instances, our algorithm does not
decrease the total value that the players can get.

Polyhedral Tools: Circuits!

The stabilizer results for unit-capacity instances mainly used combinatorial
techniques, we instead rely on (new) polyhedral arguments. Decreasing the
capacity of a vertex or removing an edge, are operations that correspond
with translating inequalities of the LP that describes νcf(G). We prove the
following general theorem.

Theorem 3

Let P be any polytope, a>x ≤ b be an inequality of the descrip-
tion of P , and δ ∈ R>0. Let x be an optimal solution of the LP
max{c>x : x ∈ P , a>x ≤ b− δ}, and assume that x is a non-optimal ver-
tex of the LP max{c>x : x ∈ P}. Furthermore, assume that there is no
vertex x̃ of P satisfying b− δ < a>x̃ < b. Then it is possible to move
to an optimal solution of max{c>x : x ∈ P} from x in one step over the
edges of P (i.e., there is an optimal vertex of P adjacent to x).

Exploiting circuits. Moving along an edge of the fractional c-matching
polytope corresponds to taking a circuit direction of this polytope, which has
a well-known graphical interpretation. Since circuits have minimal support,
moving along it cannot increase too much the number of odd cycles in the
support of a basic fractional c-matching. Exploiting this we can show that the
minimum number of odd cycles is a lower bound on the amount of capacity
that needs to be reduced/number of edges that need to be removed.

Open Problems

• Stabilize by removing vertices, when the capacity is bounded by 2? (Poly-
time when c = 1, APX-hard when c ≤ 3.)

• Stabilize by removing edges and simultaneously preserving the weight of a
maximum-weight c-matching. Approximation algorithm?


