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Capacitated Network Bargaining Games

In capacitated network bargaining games we are given a triple (G, w, ¢). The
vertices of the graph represent players, the edges represent potential deals
between players and the edge weights represent the values of the deals. Each
player v can enter in at most ¢, deals. For each deal, the involved players
have to decide how to split the value of their deal. Hence, an outcome is
naturally associated with a c-matching 1/, and a vector a € R that satisfies
oy + Gy = Wy 1if wv € M, and a,,, = a,,, = 0 otherwise. An outcome is
stable if no pair of players has an incentive to break the current outcome to
enter in a deal with each other.

LP Characterization

A key property of (capacitated) NBG is that instances admitting a stable
outcome have a very nice LP characterization, as shown by [6, 2]: given an
instance ((&, w, ¢), there exists a stable outcome for the corresponding game
on (G if and only if the value of a maximum-weight c-matching (') equals
the value of a maximum-weight fractional c-matching /() defined as

Vi(G) = max{w 'z : z(6(v)) <c, Vv e V,0 <z <1}

In other words, instances admitting stable outcomes are the ones for which
the LP relaxation of the maximum-weight c-matching problem has an optimal
integral solution. A graph (& for which (&) = 1/4((7) is called stable.

The Stabilizer Problem

The stabilizer problem is motivated by the fact that not all graphs are stable.
The goal is to minimally modify a graph as to ensure a stable outcome. A
natural way to modify a graph is by reducing the capacity of vertices (players),
or removing edges (blocking deals).

Capacity-stabilizer problem: given an instance (G, w, ¢), find a minimum-
cardinality multi-set S of vertices, such that if you reduce the capacity of all
vertices in S by one, you obtain a stable graph.

Edge-stabilizer problem: given an instance (G, w,c¢), find a minimum-
cardinality set /' C F/, such that G \ F' is stable.

In unit-capacity (¢ = 1) graphs, the capacity-stabilizer problem is polynomial-
time solvable [1, 5, 7], while the edge-stabilizer problem is NP-hard, and
even hard-to-approximate with a constant factor, but admits an O(A)-
approximation algorithm [4, 3, 7].

Structure

Extreme point solutions of V}(G), or basic fractional c-matchings, satisfy

z. € {0, %, 1} for all edges ¢ € F, and the edges with =, = % induce vertex-

disjoint odd cycles with saturated vertices. To stabilize an instance, we hence
want to get rid of these odd cycles.
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Capacity-Stabilizer

Theorem 1

T he capacity-stabilizer problem is polynomial-time solvable.

The main idea of the algorithm is this: compute a basic maximum-weight
fractional c-matching, and for each odd cycle induced by 2, = % edges, choose

one vertex and reduce its capacity by one.

Key properties. Our algorithm preserves the total value that the players
can get up to a factor that is asymptotically best possible, and it reduces the
capacity of each vertex by at most one. This has a nice network bargaining
interpretation: there is always an optimal and at the same time fair way to
stabilize instances, as no player will have its capacity dramatically reduced
compared to others.

Edge-Stabilizer

Theorem 2

The edge-stabilizer problem admits an O(/\)-approximation algorithm.

Based on the unit-capacity approximation algorithm, we use the capacity-
stabilizer algorithm, but instead of reducing the capacity of the vertices, we

remove all edges incident with those vertices, except the edges ¢ with =, = 1.

Key properties. In unit-weight (w = 1) instances, our algorithm does not
decrease the total value that the players can get.

Polyhedral Tools: Circuits!

The stabilizer results for unit-capacity instances mainly used combinatorial
techniques, we instead rely on (new) polyhedral arguments. Decreasing the
capacity of a vertex or removing an edge, are operations that correspond
with translating inequalities of the LP that describes 1//((+). We prove the
following general theorem.

Theorem 3

Let P be any polytope, a'x <b be an inequality of the descrip-
tion of P, and 0 € R.,. Let = be an optimal solution of the LP
max{c'z:x € P,a'x <b— 0}, and assume that T is a non-optimal ver-

tex of the LP max{c'x :x € P}. Furthermore, assume that there is no

vertex © of P satisfying b — 9 < a'x < b. Then it is possible to move
to an optimal solution of max{c'z :x € P} from T in one step over the
edges of P (i.e., there is an optimal vertex of P adjacent to T ).

Exploiting circuits. Moving along an edge of the fractional c-matching
polytope corresponds to taking a circuit direction of this polytope, which has
a well-known graphical interpretation. Since circuits have minimal support,
moving along it cannot increase too much the number of odd cycles in the
support of a basic fractional c-matching. Exploiting this we can show that the
minimum number of odd cycles is a lower bound on the amount of capacity
that needs to be reduced/number of edges that need to be removed.

Open Problems

e Stabilize by removing vertices, when the capacity is bounded by 27 (Poly-
time when ¢ = 1, APX-hard when ¢ < 3.)

e Stabilize by removing edges and simultaneously preserving the weight of a
maximum-weight c-matching. Approximation algorithm?



